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Abstract. By implementing a time-independent, nonperturbative many-electron, many-photon theory
(MEMPT), cycle-averaged complex eigenvalues were obtained for the He atom, whose real part gives
the field-induced energy shift, ∆(ω1, F1; ω2, F2, ϕ), and the imaginary part is the multiphoton ioniza-
tion rate, Γ (ω1, F1; ω2, F2, ϕ), where ω is the frequency, F is the field strength and ϕ is the phase
difference. Through analysis and computation we show that, provided the intensities are weak, the de-
pendence of Γ (ω1, F1; ω2, F2, ϕ) on ϕ is simple. Specifically, for odd harmonics, Γ varies linearly with
cos(ϕ) whilst for even harmonics it varies linearly with cos(2ϕ). In addition, this dependence on ϕ
holds for ∆(ω1, F1; ω2, F2, ϕ) as well. These relations may turn out to be applicable to other atomic
systems as well, and to provide a definition of the weak field regime in the dichromatic case. When the
combination of (ω1, F1) and (ω2, F2) is such that higher powers of cos(ϕ) and cos(2ϕ) become impor-
tant, these rules break down and we reach the strong field regime. The herein reported results refer to
Γ (ω1, F1; ω2, F2, ϕ) and ∆(ω1, F1; ω2, F2, ϕ) for He irradiated by a dichromatic ac-field consisting of the
fundamental wavelength λ = 248 nm and its 2nd, 3rd and 4th higher harmonics. The intensities are in the
range 1.0 × 1012−3.5 × 1014 W/cm2, with the intensity of the harmonics being 1–2 orders of magnitude
smaller. The calculations incorporated systematically electronic structure and electron correlation effects
in the discrete and in the continuous spectrum, for 1S, 1P, 1D, 1F, 1G, and 1H two-electron states of even
and odd parity.

PACS. 32.80.Rm Multiphoton ionization and excitation to highly excited states
(e.g., Rydberg states) – 32.80.Fb Photoionization of atoms and ions – 32.80.Qk Coherent control
of atomic interactions with photons

1 Introduction

The response of atoms or molecules to dichromatic laser
fields leads to the dependence of observables on the phase
difference ϕ. This fact has been the subject of many theo-
retical and experimental publications. For representative
analyses and results the reader is referred to [1–22]. The
basic source of this dependence is the quantum mechanical
interference between the various possible excitation paths.
For example, the weak-field model analysis of Brumer and
Shapiro [2,3] illustrated how the irradiation of a bound
state with a field of commensurate frequencies, ω1 and
ω2 = 3ω1, may be used for the coherent phase control
of the rate of production of the final products in the
continuous spectrum. Additional early results based on
one- electron calculations within time-dependent [6,10]
and time-independent Floquet frameworks [7,8] showed
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the effect of ϕ on field-induced properties, even for strong
fields. Experimental work has also revealed the effect of
phase-dependent interference on atomic observables (e.g.
[4,5,12,13,19,20]).

The situation of a polyelectronic atomic state inter-
acting with one laser field can be treated within a time-
independent or a time-dependent framework, depending
on the nature of the field in connection with the atomic
spectrum which is probed. In either case, one is faced,
in general, with a many-electron, many-photon (MEMP)
problem, whose proper solution must be achieved in the
context of two regimes: one where the field is weak with
respect to the state of interest, and for which lowest-order
perturbation theory (LOPT) holds, and one where the
field is strong and the theory and calculation must go be-
yond LOPT, even to infinite order.

When the polyelectronic atomic state is made to in-
teract with a dichromatic or a polychromatic laser field,
it is natural that the MEMP problem becomes very de-
manding, especially when one aims at the inclusion of
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all the significant electronic structure characteristics be-
yond the independent particle model. Apart from the
ensuing many-electron problem, one has to consider the
fact that there is no definition of the weak field regime,
since the final rate results from the addition of am-
plitudes involving matrix elements with two or more
fields. A time-independent, nonperturbative MEMP the-
ory, (MEMPT), and method of computation of the en-
ergy width, Γ (ω1, F1; ω2, F2, ϕ), and the energy shift,
∆(ω1, F1; ω2, F2, ϕ), which occur when an atomic state,
ground or excited, is placed in a dichromatic field, (ω1

and ω2), with field strengths F1, F2, that may be weak
or strong, was developed by us recently [21,22], by ex-
tending in a practical way for commensurate frequencies,
the MEMPT for the monochromatic case ([23] and refer-
ences therein). The calculations in [21,22] as well as here
dealt with helium for experimentally achievable situations.
Specifically, we used ω1 = 5 eV (λ1 = 248 nm) and the
higher harmonics with ω2 = mω1, m = 2, 3, 4. The in-
tensities of the fundamental ω1 ranged between 1.0×1012

and 3.5× 1014 W/cm2 while those of the harmonics were
1–2 orders of magnitude smaller.

The purpose of this contribution is to report results of
the MEMPT for both weak and strong fields from which it
follows that it is possible for the rate of multiphoton ion-
ization as well as for the energy shift to depend in a simple
way on the phase difference, ϕ, when the two fields with
commensurate frequencies are weak. This dependence is
cos(ϕ) when the harmonics are odd, and cos(2ϕ) when
the harmonics are even. The nonperturbative calculations
demonstrate that these rules break down when the field
strengths increase. A plausible explanation of this phe-
nomenon is given in terms of heuristic arguments.

We point out that in [21] comparison was made with
the only previously available results for this case, namely
those of Telnov and Chu [17b], who computed field-
dressed energies only for ϕ = 0 and ϕ = π by imple-
menting a generalized Floquet formulation of the time-
dependent density functional theory (TDDFT) using a
Hartree-Fock functional. Our results, which include the ef-
fects of electron correlation, show the same trend as those
of [17b] as a function of intensity, but differ quantitatively.

2 Heuristic argument about the form
of the dependence of Γ and ∆ on the phase
difference

We take the dichromatic field, F (t), as

F (t) = F1 cos(ω1t) + F2 cos(ω2t+ ϕ), (1)

where ω1 = ω, ω2 = mω, m = even or odd integer. We
ask the question whether it is possible to obtain a sim-
ple mathematical relationship between the results of the
perturbation, namely Γ and ∆, and ϕ.

In order to facilitate the syllogism, we use as exem-
plar Figure 1, which shows the possibilities of multipho-
ton ionization for harmonic frequencies of ω2 = mω1,
m = 2, 3...7.

Fig. 1. Schematic diagram showing the lowest order pro-
cesses for the multiphoton ionization of an atom, with ion-
ization potential Ip, which is initially in its ground state of
energy E0. The frequencies corresponding to each process are
the fundamental ω1 = ω and its higher harmonics ω2 = mω
(m = 1, ..., 7).

Figure 1 implies lowest order perturbative conditions,
whereby both ∆ and Γ are determined by the same types
of matrix elements present in the lowest order perturba-
tion theory (LOPT). The final states in the continuous
spectrum have the same energy and symmetry and this
leads to quantum interference of two or more paths for ω1

and ω2, which depends on the value of ϕ. We hypothesize
that the intensities F1 and F2 of the two paths repre-
senting the maximum and the minimum number of pho-
tons necessary for ionization are such that the correspond-
ing transition rates are about the same. This implies that
F2 < F1, since the order of the process for F1 is higher.
Given this constraint, it is reasonable to expect that there
must be one or more paths in between, with larger tran-
sition rates. We then assume that the dominant contribu-
tion to the partial ionization rate for the specific final state
comes from intermediate paths, and that these final states
are the dominant contributors to the overall interference
producing the dependence of Γ and ∆ on ϕ.

When both intensities are in the domain of LOPT, the
most important final states will be those just above thresh-
old with energies ranging from E0 + n1ω1 to E0 + n2ω2,
where (n1, n2) are the smallest numbers of photons re-
quired for ionization by fields of frequencies ω1 and ω2

(Fig. 1). In order to trace the paths leading to the same
final states, we can use heuristically the LOPT formulae
or Figure 1, in order to substitute the path of ω1 with
the appropriate paths of ω2 = mω. In this way, a path
consisting of steps of ω1 with field strength F1 (Fig. 2a)
is sequentially replaced by paths of lower multiphoton or-
der, consisting of steps of ω1 as well as of ω2 = mω, with
phase difference ϕ. We point out that, although the field
Hamiltonian of the MEMPT calculations contains rotat-
ing as well as counter-rotating terms, Figure 2 does not
contain all the possible ionization paths and does not indi-
cate the possible situations whereby intermediate bound
states influence the nonlinear processes. This is because
we wish to simplify matters so as to be able to explore
the possible effects of easily visualized paths that bring
about quantum interference. So, from the properties of the
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Fig. 2. Various paths for the multiphoton ionization of an
atom in a dichromatic ac-field. For reasons of economy, the
counter-rotating terms, which are associated with the factor
e−iϕ, are not shown; (a) path consisting of steps of the fun-
damental frequency ω1 = ω and field strength F1; (b) path
(a) where (2k+ 1)ω steps are substituted with one step of F2,
ω2 = (2k+1)ω, ϕ; (c) path (b) where a different set of (2k+1)ω
steps is substituted with one step of F2, ω2 = (2k + 1)ω, ϕ;
(d) path with steps of the higher harmonic, ω2; (e) path (a)
where (2 × 2k)ω steps are substituted with two steps of F2,
ω2 = (2k)ω, ϕ; (f) path (e) where a different set of (2× 2k)ω
steps are substituted with two steps of F2, ω2 = (2k)ω, ϕ.

generalized cross-section, we consider it plausible that the
decrease of the order of the multiphoton process will result
in the increase of the absolute value of the ionization prob-
ability amplitude of the corresponding path, even though
F2 is smaller than F1. (Our numerical results confirm this
trend of the ionization probability amplitudes.) At the end
of this series of exchanges of paths, there must exist a path
with the minimum multiphoton order, (Fig. 2d), for which
the absolute value of the ionization probability amplitude
is essentially equal to the one corresponding to the pro-
cess of Figure 2a. This observation suggests that the paths
of consecutively decreasing multiphoton order are associ-
ated with probability amplitudes of increasing absolute
values, which, however, necessarily pass through a maxi-
mum and finally end near the original value. Of course, the
above argument cannot be proven formally and cannot be
considered as having universal validity. Nevertheless, in
the present case it is in harmony with the computed fi-
nal results, and it is up to future results on other systems
to determine the extent of its applicability. On the other
hand, we point out that, as we mention below, there are
experimental results in the literature which have indeed
revealed the dependence of the ionization rate on ϕ that
results from the present arguments and computations.

We now consider two possibilities of dichromatic mul-
tiphoton ionization.

2.1 ω2 = mω = (2k + 1)ω

The replacement of 2k + 1 steps of ω1 = ω, with one step
of ω2 = (2k + 1)ω, (see the path of Fig. 2b), results in a
subspace of final states of the same energy and symme-
try (even or odd parity). Actually, the lower the order of
the multiphoton ionization is, the smaller is the subspace
of the final states as regards their total angular momen-
tum eigenstates. For example, in He, for the process of
Figure 2a the final state subspace consists of continuum

states of symmetry 1L with L = n1, n1− 2, n1− 4, ... and
for the process of Figure 2b the corresponding symmetry
is 1L with L = n1−2k, n1−2k−2, n1−2k−4, ... The next
path (Fig. 2c) is constructed by replacing another group
of 2k + 1 steps of ω1 with one of (ω2, F2, ϕ), and so on.

The total ionization rate Γ (ω1, F1; ω2, F2, ϕ) is ob-
tained from the square of the absolute value of the sum
of the probability amplitudes of the various paths to the
same final states whose energies range from E0 + n1ω1 to
E0 + n2ω2 and whose parities may be even or odd. We
write:

Γ (ω1 = ω, F1;ω2 = (2k + 1)ω, F2, ϕ)

∼
∣∣∣∣∣∑
p

Qp eipϕ

∣∣∣∣∣
2

+ ... (2)

where p changes in steps of 1 and Qp are the ionization
probability amplitudes of each path leading to the same
final state. The remaining terms in (2) represent summa-
tions of other amplitudes leading to other final states.
Each state is characterized by its energy and its sym-
metry. The final states that contribute significantly to Γ
and give rise to quantum interference could be more than
one. For each such final state, one of the Qp’s represents
the maximum value (QM). With the heuristic assumption
that, for not too low frequencies, QM and QM±1 are the
leading terms in each factor of equation (2), (with phase
difference ϕ), the quantum interference is driven by two
terms:

Γ (ω1 = ω, F1;ω2 = (2k + 1)ω, F2, ϕ)
∼ A+B cos(ϕ) + ... (3)

With increasing field strengths, the higher terms of equa-
tion (3) should come into play.

The form (3) and the dependence of Γ (∆) on cos(ϕ) for
weak fields, and the breakdown when the field strengths
increase, is verified by the nonperturbative MEMPT cal-
culations reported in [21,22] and here. Furthermore, con-
firmation of this form can be found in already published
observations of a rather different system. Specifically,
Chen and Elliot [5] deduced such a cosine dependence
for the particular case of their pioneering (ω, 3ω) experi-
ments on the 6s 1S → 6p 1P0 transition in atomic mer-
cury with laser pulses consisting of an intense component
of λ1 = 554 nm and a weak component of λ2 = 185 nm.

2.2 ω2 = mω = (2k)ω

Unlike Section 2.1, the replacement of 2k steps of (ω1, F1)
with one step of (ω2, F2, ϕ) does not result in a subspace
of final states of the same parity. Instead, it is the replace-
ment of 2(2k) steps (of ω1, F1) by two steps of (ω2, F2, ϕ)
that gives a path which ends in a subspace of final states of
the same energy and parity (Fig. 2e). The next path, de-
picted in Figure 2f, is obtained by replacing another group
of 2(2k) steps of (ω1, F1) with two steps of (ω2, F2, ϕ), and
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so on. Similarly to the Section 2.1, the total ionization rate
is given by

Γ (ω1 = ω, F1;ω2 = (2k)ω, F2, ϕ)

∼
∣∣∣∣∣∑
p

Q2p ei2pϕ

∣∣∣∣∣
2

+ ... (4)

Following the same arguments as before, (Sect. 2.1), we
conclude that Γ is driven by two terms:

Γ (ω1 = ω, F1;ω2 = (2k)ω,F2, ϕ)
∼ A+B cos(2ϕ) + ... (5a)

= A′ +B′ cos2(ϕ) + ... (5b)

Again, the higher order terms of equation (5) should ac-
quire significant values with increasing field strengths.

The form (5) and its breakdown as the field strength
increases is verified by our MEMPT computations. Fur-
thermore, it has been observed in the past, without how-
ever having been subjected to analysis, in larger atoms
as well. Specifically, sometime ago, Szöke, Kulander and
Bardsley [6] obtained it by fitting the measurements of
Muller et al. [4] on Kr, where Kr was irradiated by a
dichromatic field with λ1 = 1064 nm and its 2nd harmonic
λ2 = 532 nm.

3 Extended MEMPT and application to He
for weak and strong dichromatic ac-fields
of λ = 248 nm (ω1 = ω = 5 eV)
and its higher harmonics
(ω2 = mω,m = 2, 3, 4)

The theory of field induced interference in multiphoton
ionization presented here, has been supported by quanti-
tative results on He, for experimentally verifiable condi-
tions. It is noteworthy that the present work has dealt not
only with the behavior of the transition rates, a subject
which is at the focus of research on coherent control, but
also with that of the energy shift, ∆, and its dependence
on the phase difference. Since ∆ can, under certain condi-
tions, be related to measurable nonlinear dynamic polar-
izabilities, our results provide an additional opportunity
for experimental exploration.

Since the formalism and the methods of the MEMPT
for atoms in polychromatic fields with commensurate fre-
quencies was given recently elsewhere, together with the
description of the application to He [21,22], we do not re-
peat them here. However, we should say a few words about
essential points of the MEMPT, whose initial presentation
was made in the late 1980s, with applications to the neg-
ative ions of H and Li, treated as polyelectronic systems
and not as one electron models [23–25]. (See also the re-
cent work on multiphoton detachment of H− [26].) The
response of He to a monochromatic ac-field was treated
recently, within the MEMPT, in [27].

As discussed in [21–27], the physics of multiphoton ion-
ization induced by a cycle-averaged interaction of an ac-
field with an atom, can be formulated in terms of a state-
specific complex eigenvalue Schrödinger equation, whose
eigenfunction consists of two parts that are represented by
different types of function spaces. Their distinct physical
content and the complex eigenvalue emerge naturally from
an argument based on configuration-interaction between
the field-dressed discrete state and the ionized continuum
and consideration of the asymptotic form under resonance
boundary conditions [28]. This asymptotic form expresses
an outgoing wave with complex energy, (Gamow orbital),
which is not square-integrable. As a result, the correspond-
ing matrix elements are divergent. However, these can be
regularized even for the electric field linear potential with
the help of the Dykhne-Chaplik transformation ρ = eiθ on
the coordinate of the Gamow orbital [28]. In this way, the
sought-after solution becomes square-integrable (L2) but
the problem is now non-Hermitian.

The L2 solution, Ψ0(ρ), which is connected adiabati-
cally to the initial unperturbed atomic state, Ψ0, is ex-
pressed formally as

|Ψ0(ρ)〉 =
∑
i,n

αi,n(θ)|ψi(ρ);n〉+
∑
j,n

bj,n(θ)|Xj(ρ);n〉

(6)

where ψi denotes bound states and the localized parts of
the autoionizing states, Xj denotes the L2 “scattering”
states and n is the index for the photon states. In the
semiclassical approximation, when the external field is a
periodic function of time (ac-field), the Fourier analysis
of the time-dependent wave-functions leads to terms with
index n, to which we attach the name “photon states”. Ex-
pansion (6) is the same as the one used in the monochro-
matic case since the frequencies of the dichromatic (or
polychromatic in the general case) field are commensu-
rate. The only photon states used, which are necessary for
the accurate description of Ψ0(ρ), are those of the funda-
mental frequency. In the general polychromatic case with
incommensurable frequencies, it would be necessary to use
for each frequency separate photon states, a fact which
increases considerably the numerical load toward the so-
lution of the MEMP problem.

According to the MEMPT, the dressed Hamiltonian
coordinates are real and not complex, as they are in the
Floquet, complex scaling methods [17]. The emphasis is
on representing each significant state of the spectrum by a
state-specific wavefunction in expansion (6), together with
other terms representing virtual states and the continuous
spectrum. The correlated function space used in this work
was the one that was presented in [21,27]. Therefore, we
do not repeat it here. We simply note that the space of
Xj contains L2 two-electron functions of the form 1s⊗ε`,
where the orbital ε` is expanded in terms of Slater type
orbitals (STO) with a complex coordinate:

ξk(ρ∗) = ξk(re−iθ) = Ck(θ)rk e−αρ
∗
. (7)
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Fig. 3. (a) Multiphoton ionization rates (Γ in a.u. – open circles) of the He ground state irradiated by linearly polarized field
of frequency ω = 0.18373 a.u. (λ = 248 nm) with intensity I1 = 4.5× 1013 W/cm2 and by its second harmonic (ω2 = 2ω) with
I2 = 6.1 × 1012 W/cm2, as a function of cos(2ϕ). The dotted line represents the fitted polynomial of equation (8). (b) As in
(a), but for I1 = 3.5 × 1014 W/cm2 and I2 = 3.2 × 1013 W/cm2. (c) Energy shift (∆ in a.u. – open circles) of the He ground
state irradiated by linearly polarized field of frequency ω = 0.18373 a.u. (λ = 248 nm) with intensity I1 = 1.4 × 1013 W/cm2

and by its second harmonic (ω2 = 2ω) with I2 = 3.5 × 1012 W/cm2, as a function of cos(2ϕ). The dotted line represents the
fitted polynomial of equation (8).

For each ` (` = 0, ..., 5) the continuum orbitals were ex-
panded in 10 ξk(ρ∗), except for ` = 5, for which 8 ξk(ρ∗)
were used.

The convergence of the calculation is achieved when,
for a reasonable range of the values of the parameters
present in the basis set and of the number of the pho-
ton states, the complex eigenvalue remains essentially un-
changed. Specifically, it was found that convergence was
established when the number of the photon states reached
ten or eleven, and when the parameters in (7) are: α = 1.5
and θ = 0.3 rad.

Following the arguments of Section 2, we classify the
results with respect to the order of the harmonics.

3.1 Even harmonics (ω2 = (2k)ω)

3.1.1 ω2 = 2ω

Figure 3a shows the ionization rates of the He ground
state irradiated by linearly polarized field of frequency
ω = 0.18373 a.u. (λ = 248 nm) with intensity I1 =
4.5 × 1013 W/cm2 and by its second harmonic with
I2 = 6.1 × 1012 W/cm2, as a function of cos(2ϕ). Even

though the MEMPT calculation is nonperturbative, what
has emerged is a very good linear dependence of the rate
on cos(2ϕ), in accordance with the prediction given in Sec-
tion 2. The dotted line in Figure 3a represents the fitted
polynomial in powers of cos(2ϕ), to the ab initio rates:

Γ = A+B1 cos(2ϕ) +B2 cos2(2ϕ) + ..., (8)

with A = 4.23× 10−7 a.u., B1 = 8.16× 10−8 a.u., B2 =
4.2 × 10−10 a.u. The coefficient of the quadratic term is
more than two orders of magnitude smaller than B1. On
the other hand, for I1 = 3.5×1014 W/cm2 and I2 = 3.2×
1013 W/cm2, the rates deviate from the linear dependence
on cos(2ϕ) (Fig. 3b). The fitted polynomial of equation (8)
(dotted line in Fig. 3b) yields the coefficients: A = 2.2×
10−4 a.u., B1 = 4.3 × 10−5 a.u., B2 = 7.0 × 10−6 a.u.
In this case, the coefficient B2 is less than an order of
magnitude smaller than B1.

In addition, for intensities I1 = 1.4 × 1013 W/cm2

and I2 = 3.5 × 1012 W/cm2, the energy shift
∆(ω1, F1;ω2, F2, ϕ) varies linearly with cos(2ϕ), as shown
in Figure 3c, with the dotted line representing a fitted
polynomial similar to the one of the right hand side
of equation (8). For higher intensities the energy shift
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Fig. 4. (a) As in Figure 3a, but for ω2 = 4ω, I1 = 1 × 1014 W/cm2 and I2 = 1 × 1012 W/cm2. (b) As in (a), but for
I1 = 2.24 × 1014 W/cm2 and I2 = 3.5 × 1012 W/cm2. (c) As in Figure 3c, but for ω2 = 4ω, I1 = 1 × 1014 W/cm2 and
I2 = 1× 1012 W/cm2.

deviates from the linear dependence on cos(2ϕ), as in the
case of the rates. The slope of the straight line (coefficient
B1) should be connected to a certain component of a high
order dynamic hyperpolarizability tensor. A more elabo-
rate treatment of these quantities will be given, hopefully,
in a future publication.

3.1.2 ω2 = 4ω

Figure 4a shows the ionization rate of He for I1 = 1 ×
1014 W/cm2 and I2 = 1 × 1012 W/cm2, as a function
of cos(2ϕ). Again, a linear dependence is obtained. What
is interesting is that this linear dependence persists even
when the intensity I1 for the fundamental frequency is
beyond the domain of the validity of the LOPT. (For a
monochromatic Γ with ω = 5 eV, LOPT breaks down
around I = 7 × 1013 W/cm2. For weak intensities, five
5 eV photons are needed for ionization of He. However,
for I1 = 1 × 1014 W/cm2, six photons are required, due
to the ponderomotive shift.) The coefficients of the fitted
polynomial (dotted line in Fig. 4a) are now A = 2.48 ×
10−5 a.u., B1 = 2.83×10−8 a.u., B2 = −2.63×10−10 a.u.
By increasing the intensities to I1 = 2.24 × 1014 W/cm2

and I2 = 3.5 × 1012 W/cm2, a deviation from the linear
dependence is obtained, as it is shown in Figure 4b. The
values of the coefficients of the fitted polynomial (dotted

line) are: A = 1.03 × 10−4 a.u., B1 = 7.62 × 10−8 a.u.,
B2 = 8.8× 10−8 a.u.

As in the previous case and for intensities I1 = 1 ×
1014 W/cm2 and I2 = 1 × 1012 W/cm2, the energy shift
∆(ω1, F1;ω2, F2, ϕ) varies linearly with cos(2ϕ), as shown
in Figure 4c. Similarly, the dotted line represents the fit-
ted polynomial of equation (8) and for higher intensities
the energy shift deviates from the linear dependence on
cos(2ϕ).

3.2 Odd harmonics (ω2 = (2k + 1)ω)

3.2.1 ω2 = 3ω

Figure 5a shows the rate of He for I1 = 1× 1014 W/cm2

and I2 = 1× 1012 W/cm2, as a function of cos(ϕ). As in
Figure 4a, the rate is governed by a linear dependence on
cos(ϕ), even though the intensity I1 is beyond the domain
of the validity of the LOPT for the monochromatic case.
The coefficients of the fitted polynomial (dotted line)

Γ = A+B1 cos(ϕ) +B2 cos2(ϕ) + ... (9)

are, A = 2.75 × 10−6 a.u., B1 = 1.56 × 10−6 a.u., B2 =
5.82× 10−8 a.u.

An increase of the intensities to I1 = 1.7×1014 W/cm2

and I2 = 1.4×1013 W/cm2 results in a dependence of the
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Fig. 5. (a) Multiphoton ionization rates (Γ in a.u. – open circles) of the He ground state irradiated by linearly polarized field
of frequency ω = 0.18373 a.u. (λ = 248 nm) with intensity I1 = 1 × 1014 W/cm2 and by its third harmonic (ω2 = 3ω) with
I2 = 1× 1012 W/cm2, as a function of cos(ϕ). The dotted line represents the fitted polynomial of equation (9). (b) As in (a),
but for I1 = 1.7 × 1014 W/cm2 and I2 = 1.4 × 1013 W/cm2. (c) As in Figure 4c, but for ω2 = 3ω, I1 = 1 × 1014 W/cm2 and
I2 = 1× 1012 W/cm2.

rate which is not linear with respect to cos(ϕ). This is
shown in Figure 5b. When we fit the polynomial of equa-
tion (9) to the MEMPT values, the values of the coeffi-
cients are A = 5.04 × 10−5 a.u., B1 = 2.2 × 10−5 a.u.,
B2 = 3.8× 10−6 a.u.

As in the previous cases and for intensities I1 =
1 × 1014 W/cm2 and I2 = 1 × 1012 W/cm2, the energy
shift ∆(ω1, F1; ω2, F2, ϕ) varies linearly with cos(ϕ), as
shown in Figure 5c, with the dotted line representing the
fitted polynomial of equation (9). Again, the higher the
intensities are, the stronger the deviation from the linear
dependence of the energy shift is.

4 Conclusion

The analysis and the quantitative MEMPT results for He
presented in this paper indicate that when atoms are irra-
diated by weak dichromatic ac-fields (F1, ω1 = ω;F2, ω2 =
mω,ϕ), path interference is such that the multiphoton ion-
ization rate and the energy shift are governed by a simple
rule as regards their relation to the phase difference, ϕ. In-
deed, for odd (m = 2k+1) higher harmonics, both the field
induced energy width and shift vary linearly with cos(ϕ),

whilst for even higher harmonics they vary linearly with
cos(2ϕ). This behavior provides an index for defining the
domain of weak fields in the dichromatic case, just like
the dependence of the rate on In, as it is clearly derived
from the LOPT, provides the index for weak fields in the
monochromatic case. Given this distinction, one may de-
fine the strong field regime for the dichromatic case for
spectra such as those of He and other noble gases, as
that combination of the two intensities whereby the de-
pendence of the multiphoton ionization rate on ϕ is no
longer simple, since terms with higher powers of cos(ϕ)
and cos(2ϕ) contribute significantly.
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